Add like
Add dislike
Add to saved papers

Apigenin attenuates patulin-induced apoptosis in HEK293 cells by modulating ROS-mediated mitochondrial dysfunction and caspase signal pathway.

Mycotoxins like patulin (PAT) are among the most significant food contaminant with regard to public health. This study aimed to evaluate the protective effect of apigenin (API), one of the most bioactive flavonoids in plant-derived food, on PAT-induced apoptosis in HEK293 cells. Cells were treated under basic conditions, 8 μM PAT without or with API (2.5, 5 and 10 μM) concomitantly for 10 h. API exerted renoprotective effect by inhibiting intracellular reactive oxygen species (ROS) accumulation, modulating oxidative phosphorylation especially elevating the expression of ATP synthase, re-establishing mitochondrial membrane potential (MMP) and maintaining higher intracellular ATP level, accompanied by p53, Bax downregulation and Bcl-2 upregulation. Thereby, cytochrome c release from mitochondria to cytoplasm was reduced, causing inhibition of initiator caspases-9 and executioner caspases (3, 6 and 7) expression and enzyme activities. Results revealed dietary apigenin attenuates patulin-induced apoptosis in HEK293 cells by modulating ROS-mediated mitochondrial dysfunction and caspase signal pathway.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app