Add like
Add dislike
Add to saved papers

Capillary electrophoresis-tandem mass spectrometry as a highly selective tool for the compositional and site-specific assessment of multiple peptide-deamidation.

Analytica Chimica Acta 2017 August 23
Site-specific mapping of multiple deamidations in peptides is a challenging analytical task. In this work, capillary electrophoresis-tandem mass spectrometry (CE-MS/MS) is presented as a high-resolution tool for the detailed characterization of these subtle modifications in peptides. The 4.5-kDa peptide drug TRI-1144, which contains five closely-positioned potential deamidation sites, was selected as model compound. TRI-1144 was exposed to acidic conditions and/or elevated temperatures for 1-14 h. Stressed samples were analyzed using a background electrolyte (BGE) of 150 mM ammonium formate (pH 6.0) in combination with a capillary coated with a bilayer of Polybrene-dextran sulfate. Separation of deamidated and deacetylated TRI-1144 species, including several positional isomers, was greatly enhanced by adding up to 40 vol% of acetonitrile-isopropanol (87.5:12.5, v/v) to the BGE, allowing reliable determination of the number of deamidations/deacetylations per degradation product. Collision-induced dissociation MS/MS was conducted on the separated peptide components in order to reveal the exact position of deamidation on the peptide chain. Obtained fragment ions showed overlapping isotopic distributions in their MS/MS spectra resulting from the comigration of different isomeric deamidated species. Comparison of theoretical and measured isotope distributions for specific y ions of peptide fragments yielded the identity and relative abundance of isomeric deamidated products. The developed CE-MS/MS methodology was used for the highly selective evaluation of TRI-1144 stability under different stress conditions, providing detailed qualitative and semi-quantitative degradation maps of the peptide drug.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app