Add like
Add dislike
Add to saved papers

Treatment of highly toxic cardboard plant wastewater by a combination of electrocoagulation and electrooxidation processes.

The objective of this study was to investigate the removal efficiencies of the electrochemical treatment systems as an alternative for the treatment of cardboard plant wastewater (CPW). In accordance with this purpose, CPW was treated by electrocoagulation (EC) with Al electrodes and the effects of current density (CD), operating time (t), and initial pH (pHi ) were investigated. The results showed that EC at optimum treatment conditions (CD: 7.5mA/cm2 , pHi : 7.0 and t: 60min) have limited removal efficiencies for total organic carbon (TOC; 17.1%) and chemical oxygen demand (COD, 14.2%), on the contrary of turbidity (98.7%). Due to the low TOC and COD removal efficiencies, a secondary treatment was needed and the electrocoagulated effluent was subjected to electrooxidation (EO) by using a boron doped diamond (BDD) electrode for investigating the effect of CD, t, pHi and electrolyte concentration (Ce ). Higher TOC (83.7%) and COD (82.9%) removal efficiencies were obtained by EO under the optimum treatment conditions (CD: 100mA/cm2 , pHi : 7.2, Ce : 5.0g/L Na2 SO4 and t: 180min). In addition, a toxicity test was carried out to the raw and treated wastewater under the optimum operating conditions. This study demonstrated that the combination of EC and EO have a satisfactory potential for real industrial wastewater with a high organic content, suspended solids and toxicity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app