Add like
Add dislike
Add to saved papers

Control of Reversible Activation Dynamics of [Ru{η 6 :κ 1 -C 6 H 5 (C 6 H 4 )NH 2 }(XY)] n+ and the Effect of Chelating-Ligand Variation.

The potential use of organoruthenium complexes as anticancer drugs is well known. Herein, a family of activatable tethered ruthenium(II) arene complexes of general formula [Ru{η6 :κ1 -C6 H5 (C6 H4 )NH2 }(XY)]n+ (closed tether ring) bearing different chelating XY ligands (XY=aliphatic diamine, phenylenediamine, oxalato, bis(phosphino)ethane) is reported. The activation of these complexes (closed- to open-tether conversion) occurs in methanol and DMSO at different rates and to different reaction extents at equilibrium. Most importantly, RuII -complex activation (cleavage of the Ru-Ntether bond) occurs in aqueous solution at high proton concentration (upon Ntether protonation). The activation dynamics can be modulated by rational variation of the XY chelating ligand. The electron-donating capability and steric hindrance of XY have a direct impact on the reactivity of the Ru-N bond, and XY=N,N'-dimethyl-, N,N'-diethyl-, and N,N,N',N'-tetramethylethylenediamine afford complexes that are more prone to activation. Such activation in acidic media is fully reversible, and proton concentration also governs the deactivation rate, that is, tether-ring closure slows down with decreasing pH. Interaction of a closed-tether complex and its open-tether counterpart with 5'-guanosine monophosphate revealed selectivity of the active (open) complex towards interaction with nucleobases. This work presents ruthenium tether complexes as exceptional pH-dependent switches with potential applications in cancer research.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app