Journal Article
Validation Studies
Add like
Add dislike
Add to saved papers

Unobtrusive assessment of neonatal sleep state based on heart rate variability retrieved from electrocardiography used for regular patient monitoring.

As an approach of unobtrusive assessment of neonatal sleep state we aimed at an automated sleep state coding based only on heart rate variability obtained from electrocardiography used for regular patient monitoring. We analyzed active and quiet sleep states of preterm infants between 30 and 37weeks postmenstrual age. To determine the sleep states we used a nonlinear kernel support vector machine for sleep state separation based on known heart rate variability features. We used unweighted and weighted misclassification penalties for the imbalanced distribution between sleep states. The validation was performed with leave-one-out-cross-validation based on the annotations of three independent observers. We analyzed the classifier performance with receiver operating curves leading to a maximum mean value for the area under the curve of 0.87. Using this sleep state separation methods, we show that automated active and quiet sleep state separation based on heart rate variability in preterm infants is feasible.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app