Add like
Add dislike
Add to saved papers

Kinetic modeling of sonocatalytic performance of Gd-doped CdSe nanoparticles for degradation of Acid Blue 5.

CdSe and Gd-doped CdSe nanoparticles were synthesized using a simple hydrothermal method, and their catalytic activity was examined toward degradation of Acid Blue 5 (AB5) in the sonocatalytic process. The structure and morphology of as-prepared nanomaterials were characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), Branauer, Emmett and Teller (BET) and Fourier infrared spectroscopy (FT-IR) techniques. Among the synthesized samples, 4% Gd-doped CdSe nanoparticles demonstrated the highest catalytic activity with band gap energy of 1.61eV. The effect of dopant content, initial dye concentration, catalyst dosage, ultrasonic power and inorganic radical scavengers on the degradation efficacy of AB5 was evaluated. The produced intermediates of AB5 degradation during sonocatalytic process were verified using gas chromatography-mass spectroscopy (GC-MS) technique. A novel intrinsic kinetic model for prediction of AB5 degradation efficiency was proposed. A good agreement was obtained between developed model and experimental data (R2 >0.94).

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app