Add like
Add dislike
Add to saved papers

SOCS-1 is involved in TNF-α-induced mitochondrial dysfunction and apoptosis in renal tubular epithelial cells.

Tissue & Cell 2017 October
Tumor necrosis factor-α (TNF-α) is suggested to induce mitochondrial dysfunction and apoptosis of renal tubular epithelial cells that possibly exacerbates renal function in chronic kidney disease (CKD). Here we investigated whether suppressor of cytokine signaling-1 (SOCS-1), an inhibitor of cytokine signaling, was involved in TNF-α-induced human renal tubular epithelial cells (HKCs) oxidative stress and apoptosis. TNF-α promoted the protein and mRNA expression of SOCS-1 in a time and dose dependent manner, along with increased cell apoptosis and activation of apoptosis signal regulating kinase-1(ASK1) in HKCs. Furthermore, overexpression of SOCS-1 in HKCs reduced TNF-α-mediated oxidative stress and apoptosis. Meanwhile, We also found that overexpression of SOCS-1 could regulate the activity of JAK/STAT signaling pathway. In addition, a specific JAK2 inhibitor, AG490, that both attenuated TNF-α-induced oxidative stress, also reduced apoptosis. Taken together, overexpression of SOCS-1 prevented TNF-α-mediated cell oxidative stress and apoptosis may be via suppression of JAK/STAT signaling pathway activation in HKCs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app