JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
REVIEW
Add like
Add dislike
Add to saved papers

Biomechanics of cell rearrangements in Drosophila.

To acquire their adequate size and shape, living tissues grow and substantially deform as they develop. To do so, the cells making up the tissue can grow and deform as well, but they can also divide, intercalate and die. Among those cell behaviors, cell intercalation, also named cell rearrangement, is a major contributor to the morphogenesis of many cohesive tissues since it enables tissues to drastically deform as they develop while keeping their cohesiveness and avoiding extreme deformation of their cells. Here we review the mechanical principles and biological regulations at play during cell rearrangements in Drosophila tissues by first describing them in other cellular materials and by categorizing them. We then briefly discuss their quantifications and their interplay with other cell processes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app