Add like
Add dislike
Add to saved papers

Factors affecting the interaction between carbon nanotubes and redox enzymes in direct electron transfer-type bioelectrocatalysis.

Bioelectrochemistry 2017 December
The effects of three types of water-soluble carbon nanotubes (CNTs) of different lengths on the direct electron transfer (DET)-type bioelectrocatalysis of redox enzymes were investigated. Bilirubin oxidase (BOD), copper efflux oxidase (CueO), and a membrane-bound NiFe hydrogenase (H2ase) were used as model redox enzymes for four-electron dioxygen (O2) reduction (in the case of BOD and CueO) and two-electron dihydrogen (H2) oxidation (in the case of H2ase). As a result, diffusion-controlled O2 reduction in an O2-saturated neutral buffer was realized by BOD on CNTs of a length of 1μm, but the catalytic current densities decreased as the length of CNTs increased. However, almost opposite trends were obtained when CueO and H2ase were utilized as the biocatalysts. Factors of the CNTs and the enzymes affecting the characteristics of the DET-type bioelectrocatalysis of the three enzymes were discussed. Finally, the electrostatic interaction between an enzyme (especially the portion near the redox active center) and CNTs is proposed as one of the most important factors governing the performance of DET-type bioelectrocatalysis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app