Add like
Add dislike
Add to saved papers

Association between PM 2.5 and PM 2.5 Constituents and Preterm Delivery in California, 2000-2006.

BACKGROUND: Particulate matter (PM) has been documented to contribute to preterm delivery. However, few studies have investigated the relationships between individual constituents of fine PM (PM2.5 ) and preterm delivery, and factors that may modify their associations.

METHODS: In this study, we examined the associations between several prenatal exposure metrics to PM2.5 and 23 constituents of PM2.5 and preterm delivery in California from 2000 to 2006. In a retrospective cohort study including 231 637 births, we conducted logistic regression analyses adjusting for maternal, infant, temporal, geographic, and neighbourhood characteristics.

RESULTS: We observed increased risk for preterm delivery with full-gestational exposure for several PM2.5 constituents. Per interquartile range increase, ammonium (21.2%, 95% confidence interval (CI) 17.1, 25.4), nitrate (18.1%, 95% CI 14.9, 21.4) and bromine (16.7%, 95% CI 13.2, 20.3) had some of the largest increased risks. Alternatively, some PM2.5 constituents were inversely associated with preterm delivery, including chlorine (-8.2%, 95% CI -10.3, -6.0), sodium (-13.2%, 95% CI -15.2, -11.3), sodium ion (-11.9%, 95% CI -14.1, -9.6) and vanadium (-19.2%, 95% CI -25.3, -12.6). Greater associations between PM2.5 constituents and preterm delivery were observed for Blacks and Asians, older mothers, and those with some college education compared to their reference groups, as well as for births with gestational ages from 32 to 34 weeks.

CONCLUSIONS: PM2.5 constituents ammonium, nitrate and bromine, often linked to traffic and biomass combustion, were most associated with increased risk of preterm delivery in California. Certain demographic subgroups may be particularly impacted.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app