Add like
Add dislike
Add to saved papers

Nonlinear Quantum Metrology of Many-Body Open Systems.

We introduce general bounds for the parameter estimation error in nonlinear quantum metrology of many-body open systems in the Markovian limit. Given a k-body Hamiltonian and p-body Lindblad operators, the estimation error of a Hamiltonian parameter using a Greenberger-Horne-Zeilinger state as a probe is shown to scale as N^{-[k-(p/2)]}, surpassing the shot-noise limit for 2k>p+1. Metrology equivalence between initial product states and maximally entangled states is established for p≥1. We further show that one can estimate the system-environment coupling parameter with precision N^{-(p/2)}, while many-body decoherence enhances the precision to N^{-k} in the noise-amplitude estimation of a fluctuating k-body Hamiltonian. For the long-range Ising model, we show that the precision of this parameter beats the shot-noise limit when the range of interactions is below a threshold value.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app