Add like
Add dislike
Add to saved papers

Novel Pd_{2}Se_{3} Two-Dimensional Phase Driven by Interlayer Fusion in Layered PdSe_{2}.

Two-dimensional (2D) materials are easily fabricated when their bulk form has a layered structure. The monolayer form in layered transition-metal dichalcogenides is typically the same as a single layer of the bulk material. However, PdSe_{2} presents a puzzle. Its monolayer form has been theoretically shown to be stable, but there have been no reports that monolayer PdSe_{2} has been fabricated. Here, combining atomic-scale imaging in a scanning transmission electron microscope and density functional theory, we demonstrate that the preferred monolayer form of this material amounts to a melding of two bulk monolayers accompanied by the emission of Se atoms so that the resulting stoichiometry is Pd_{2}Se_{3}. We further verify the interlayer melding mechanism by creating Se vacancies in situ in the layered PdSe_{2} matrix using electron irradiation. The discovery that strong interlayer interactions can be induced by defects and lead to the formation of new 2D materials opens a new venue for the exploration of defect engineering and novel 2D structures.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app