Add like
Add dislike
Add to saved papers

Mutable polyelectrolyte tube arrays: mesoscale modeling and lateral force microscopy.

Soft Matter 2017 August 24
In this study, the pH-dependent friction of layer-by-layer assemblies of poly(allylamine hydrochloride) and poly(acrylic acid) (PAH/PAA) are quantified for microtube array structures via experimental and simulated lateral force microscopy (LFM). A novel coarse-grain tube model is developed, utilizing a molecular dynamics (MD) framework with a Hertzian soft contact potential (such that F ∼ δ3/2 ) to allow the efficient dynamic simulation of 3D arrays consisting of hundreds of tubes at micrometer length scales. By quantitatively comparing experimental LFM and computational results, the coupling between geometry (tube spacing and swelling) and material properties (intrinsic stiffness) results in a transition from bending dominated deformation to bending combined with inter-tube contact, independent of material adhesion assumptions. Variation of tube spacing (and thus control of contact) can be used to exploit the normal and lateral resistance of the tube arrays as a function of pH (2.0/5.5), beyond the effect of areal tube density, with increased resistances (potential mutability) up to a factor of ∼60. This study provides a novel modeling platform to assess and design dynamic polyelectrolyte-based substrates/coatings with tailorable stimulus-responsive surface friction. Our results show that micro-geometry can be used alongside stimulus-responsive material changes to amplify and systematically tune mutability.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app