Add like
Add dislike
Add to saved papers

Contributions of Interleukin-33 and TSLP in a papain-soaked contact lens-induced mouse conjunctival inflammation model.

INTRODUCTION: Pathological changes of severe chronic allergic conjunctivitis are driven not only via acquired immunity but also via innate immunity. Type 2 immune response-initiating cytokines may play some roles as innate immunity-dependent components of the ocular surface inflammation. To investigate the involvement of type 2 immune response-initiating cytokines in innate immunity-dependent, papain-induced conjunctival inflammation model using IL-25-, IL-33-, and TSLP receptor (TSLPR)-knockout (KO) mice with reference to basophils and ILC2.

METHODS: Papain-soaked contact lenses (papain-CLs) were installed in the conjunctival sacs of C57BL/6-IL-25 KO, IL-33 KO, TSLPR KO, Rag2 KO, Bas-TRECK, and wild-type mice and their eyes were sampled at day 5. The eosinophil and basophil infiltration in papain-CL model was evaluated histologically and cytokine expression was examined. To clarify the roles of basophils and ILC2, basophil/ILC2-depletion experiments were carried out.

RESULTS: Papain-induced conjunctival inflammation exhibited eosinophil infiltration and upregulation of Th2 cytokine expression. Reduction of eosinophil and basophil infiltration and attenuated Th2 cytokine expression were observed in the papain-CL model using IL-33 KO and TSLPR KO mice. Depletion of basophils or ILC2s in the conjunctivae of the papain-CL model reduced eosinophil infiltration.

CONCLUSIONS: Innate immunity-driven type 2 immune responses of the ocular surface are dependent on IL-33, TSLP, basophils, and ILC2. These components may be possible therapeutic targets for refractory allergic keratoconjunctivitis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app