Add like
Add dislike
Add to saved papers

Gigaspora margarita with and without its endobacterium shows adaptive responses to oxidative stress.

Mycorrhiza 2017 November
Arbuscular mycorrhizal (AM) fungi experience oxidative stress during the plant-fungal interaction, due to endogenous reactive oxygen species (ROS) produced by fungal metabolism and exogenous ROS produced by plant cells. Here, we examine the responses to H2 O2 in Gigaspora margarita, an AM fungus containing the endobacterial symbiont Candidatus Glomeribacter gigasporarum (CaGg). Previous studies revealed that G. margarita with its endobacterium produces more ATP and has higher respiratory activity than a cured line that lacks the endobacterium. This higher bioenergetic potential leads to higher production of ROS and to a higher ROS-detoxifying capacity, suggesting a direct or indirect role of the endobacterium in modulating fungal antioxidant responses. To test the hypothesis that the fungal-endobacterial symbiosis may enhance the fitness of the AM fungus in the presence of oxidative stress, we treated the fungus with a sublethal concentration of H2 O2 and performed RNA-seq analysis. Our results demonstrate that (i) irrespective of the endobacterium presence, G. margarita faces oxidative stress by activating multiple metabolic processes (methionine oxidation, sulfur uptake, the pentose phosphate pathway, activation of ROS-scavenger genes); (ii) in the presence of its endobacterium, G. margarita upregulates some metabolic pathways, like chromatin status modifications and iron metabolism; and (iii) contrary to our hypothesis, the cured line responds to H2 O2 by activating the transcription of specific ROS scavengers. We confirmed the RNA-seq findings by measuring the glutathione and ascorbate concentration, which was the same in both lines after H2 O2 treatment. We conclude that both fungal lines may face oxidative stress, but they activate alternative strategies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app