Add like
Add dislike
Add to saved papers

Allosteric Modulation of Src Family Kinases with ATP-Competitive Inhibitors.

The Src family kinases (SFKs) are an important family of tyrosine kinases that are allosterically regulated by their SH2 and SH3 domains. Engagement of SFK SH2 and SH3 domains with their intramolecular ligands leads to reduced kinase activity by stabilizing an inactive ATP-binding site conformation. Disruption of these intramolecular interactions stabilizes a more active ATP-binding site conformation and restores SFK activity. Interestingly, this allosteric relationship is bidirectional in that ATP-competitive ligands that stabilize distinct active site conformations can divergently modulate the abilities of the regulatory SH2 and SH3 domains to participate in intermolecular interactions. Here, we describe a series of assays that profile the bidirectional relationship between the ATP-binding sites and regulatory domains of SFKs. These methods can be used to discover ATP-competitive inhibitors that are selective for distinct ATP-binding site conformations of SFKs and for characterizing the effects that ATP-competitive inhibitors of SFKs have on domains that are distal to their site of interaction.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app