Add like
Add dislike
Add to saved papers

Phytaspase-loaded, Mn-doped ZnS quantum dots when embedded into chitosan nanoparticles leads to improved chemotherapy of HeLa cells using in cisplatin.

OBJECTIVES: To investigate the potential of recombinant phytaspase loaded manganese (Mn) doped zinc sulphide (ZnS) quantum dots embedded chitosan nanoparticles for augmenting cisplatin induced chemotherapy of HeLa cells.

RESULTS: The recombinant phytaspase was cloned into bacterial expression vector PGEX-4T-2. The expressed and purified recombinant plant phytaspase protein from Escherichia coli BL21 was immobilized onto the cationic nanocomposite. Confocal microscopy elucidated the delivery of these luminescent nanocomposites inside cervical cancer HeLa cells. A 50% reduction in the viability of HeLa cells was achieved only in the case of phytaspase-nanocomposites-cisplatin combination at a dose of phytaspase (42 nM), nanocomposites (56.3 μg/ml) and cisplatin (0.44 μg/ml).

CONCLUSION: Luminescent cationic nanocomposites were developed for intracellular delivery of recombinant phytaspase, which due to its caspase-like activity assisted in substantiating the chemotherapeutic activity of apoptosis inducing drug-cisplatin.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app