Add like
Add dislike
Add to saved papers

Characterization of extracellular polymeric substance (EPS) fractions produced by Microcystis aeruginosa under the stress of linoleic acid sustained-release microspheres.

This paper focuses on the characterization of extracellular polymeric substances (EPS), which are composed of soluble EPS (SL-EPS), loosely bound EPS (LB-EPS), and tightly bound EPS (TB-EPS) produced by Microcystis aeruginosa under the stress of linoleic acid (LA) and LA sustained-release microspheres. Three-dimensional excitation-emission matrix (3D-EEM) fluorescence spectroscopy and Fourier transform infrared (FTIR) spectrometry were used to characterize three forms of EPS while the content of polysaccharide and protein was tested, respectively. The results showed that the highest inhibitor rate (IR) occurred when M. aeruginosa were exposed to LA sustained-release microspheres of 0.3 g L-1 . The 3D-EEM contour demonstrated that tryptophan and protein-like substances were detected in all three EPS fractions, whereas humic acid-like substance was only distributed in SL-EPS, and aromatic proteins merely existed in LB-EPS and TB-EPS. The infrared spectrum showed that functional groups in three EPS fractions had no obvious change in all experimental groups. Polysaccharide (1120-1270 cm-1 , C-O-C and C-O stretching vibration) and protein (1384-1670 cm-1 , C-N and N-H stretching) were detected in three forms of EPS. Graphical abstract ᅟ.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app