Add like
Add dislike
Add to saved papers

Single-stage photofermentative biohydrogen production from sugar beet molasses by different purple non-sulfur bacteria.

Biohydrogen production via fermentative routes offers considerable advantages in waste recycling and sustainable energy production. This can be realized by single-stage dark or photofermentative processes, or by a two-stage integrated process; the latter offering the higher production yields due to complete conversion of sugar substrates into H2 and CO2 . However, problems arising from the integration of these two processes limit its scale-up and implementation. Hence, high efficiency one-step fermentative biohydrogen production processes from sugar-rich wastes are preferable. In this study, different strains of purple non-sulfur bacteria were investigated for their biohydrogen production capacity on pure sucrose and sugar beet molasses, and the feasibility of single-stage photofermentative biohydrogen production was evaluated. A single-stage photofermentation process was carried out using four different strains of purple non-sulfur bacteria (Rhodobacter capsulatus DSM 1710, R. capsulatus YO3, Rhodobacter sphaeroides O.U.001, and Rhodopseudomonas palustris DSM 127) on different initial sucrose concentrations. The highest hydrogen yield obtained was 10.5 mol H2 /mol of sucrose and the maximum hydrogen productivity was 0.78 mmol/L h by Rp. palustris on 5 mM sucrose. A hydrogen yield of 19 mol H2 /mol sucrose, which represents 79% of theoretical yield, and a maximum hydrogen productivity of 0.55 mmol/L h were obtained by Rp. palustris from sugar beet molasses. The yield was comparable to those values obtained in two-stage processes. The present study demonstrates that single-stage photofermentation using purple non-sulfur bacteria on sucrose-based wastes is promising.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app