Evaluation Studies
Journal Article
Add like
Add dislike
Add to saved papers

Disposable electrochemical immunosensor for Brettanomyces bruxellensis based on nanogold-reduced graphene oxide hybrid nanomaterial.

The assembly of a novel disposable amperometric immunosensor for the detection of the red wine spoilage yeast Brettanomyces bruxellensis is reported. The nanostructured sensing interface was prepared by first coating carbon screen printed electrodes with a gold nanoparticles-reduced graphene oxide hybrid nanomaterial, which was then modified with 3-mercaptopropionic acid to further immobilize specific antibodies for B. bruxellensis via a carbodiimide-coupling reaction. The functionalized electrode allowed the amperometric detection of B. bruxellensis in buffered solutions and red wine samples in the range of 10-106  CFU/mL and 102 -106  CFU/mL, with low detection limits of 8 CFU/mL and 56 CFU/mL, respectively. The electrochemical immunosensor also exhibited high reproducibility, selectivity, and storage stability. Graphical abstract A novel disposable electrochemical immunosensor for the detection of the red wine spoilage yeast B. bruxellensis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app