Add like
Add dislike
Add to saved papers

Photosensitization mechanism of Cu(ii) porphyrins.

This work presents the mechanism of the photoinduced generation of reactive oxygen species (ROS) by paramagnetic copper porphyrins in aqueous solution. Electronic structure calculations within the framework of the (time-dependent) density functional theory, (TD)DFT, reveal the details regarding the development of the atomistic and electronic structures of the copper porphyrin in solution along the set of chemical reactions accessible upon photoactivation. This study identifies the key parameters controlling the feasibility of the various reaction pathways that drive the formation of specific reactive oxygen species, ROS, i.e. superoxide, peroxyl and hydroxyl radicals. An important outcome of our results is the rationalization of how the water solvent molecules play a crucial role in most steps of the overall reaction. The present study is illustrated by focusing on one specific copper porphyrin for which precise experimental data have recently been measured, and can readily be generalized to the whole family of paramagnetic porphyrins. The conclusions of this work shed light on the rational design of metalloporphyrins as photosensitizers for photodynamic therapy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app