Add like
Add dislike
Add to saved papers

Microstructure Refinement in W-Y2O3 Alloy Fabricated by Wet Chemical Method with Surfactant Addition and Subsequent Spark Plasma Sintering.

Scientific Reports 2017 July 21
With the aim of preparing high performance oxide-dispersion-strengthened tungsten based alloys by powder metallurgy, the W-Y2O3 composite nanopowder precursor was fabricated by an improved wet chemical method with anion surfactant sodium dodecyl sulfate (SDS) addition. It is found that the employment of SDS can dramatically decrease W grain size (about 40 nm) and improve the size uniformity. What's more, SDS addition can also remarkably improve the uniform dispersion of Y2O3 particles during the synthesis process. For the alloy whose powder precursor was fabricated by traditional wet chemical method without SDS addition, only a few Y2O3 dispersoids with size of approximate 10-50 nm distribute unevenly within tungsten grains. Nevertheless, for the sintered alloy whose powder precursor was produced by improved wet chemical method, the Y2O3 dispersoids (about 2-10 nm in size) with near spherical shape are dispersed well within tungsten grains. Additionally, compared with the former, the alloy possesses smaller grain size (approximate 700 nm) and higher relative density (99.00%). And a Vickers microhardness value up to 600 Hv was also obtained for this alloy. Based on these results, the employment of SDS in traditional wet chemical method is a feasible way to fabricate high performance yttria-dispersion-strengthened tungsten based alloys.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app