Add like
Add dislike
Add to saved papers

Control of crystallization behaviour of supercooled liquid composed of lithium disilicate on platinum substrate.

Scientific Reports 2017 July 21
Crystalline lithium disilicate (Li2Si2O5, LS2) materials, which have excellent mechanical properties with high transparency, should be obtained efficiently through the crystallization of supercooled liquid composed of LS2. However, in addition to LS2, a lithium monosilicate (Li2SiO3, LS) phase is also precipitated during the crystallization of the liquid. The precipitation of the LS phase renders it difficult to obtain a single-phase LS2 material. Here, we show that by altering the oxygen partial pressure, it is possible to change the selectivity of the precipitated phase by controlling the interfacial phenomena that occur between the liquid and platinum contact material. During cooling of the supercooled liquid, the type of precipitated phase can be controlled by optimizing the atmosphere and type of contact material. This methodology can be applied for the fabrication of other functional materials and does not require the use of other additives.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app