Add like
Add dislike
Add to saved papers

Switch-Independent Task Representations in Frontal and Parietal Cortex.

Alternating between two tasks is effortful and impairs performance. Previous fMRI studies have found increased activity in frontoparietal cortex when task switching is required. One possibility is that the additional control demands for switch trials are met by strengthening task representations in the human brain. Alternatively, on switch trials, the residual representation of the previous task might impede the buildup of a neural task representation. This would predict weaker task representations on switch trials, thus also explaining the performance costs. To test this, male and female participants were cued to perform one of two similar tasks, with the task being repeated or switched between successive trials. Multivoxel pattern analysis was used to test which regions encode the tasks and whether this encoding differs between switch and repeat trials. As expected, we found information about task representations in frontal and parietal cortex, but there was no difference in the decoding accuracy of task-related information between switch and repeat trials. Using cross-classification, we found that the frontoparietal cortex encodes tasks using a generalizable spatial pattern in switch and repeat trials. Therefore, task representations in frontal and parietal cortex are largely switch independent. We found no evidence that neural information about task representations in these regions can explain behavioral costs usually associated with task switching.SIGNIFICANCE STATEMENT Alternating between two tasks is effortful and slows down performance. One possible explanation is that the representations in the human brain need time to build up and are thus weaker on switch trials, explaining performance costs. Alternatively, task representations might even be enhanced to overcome the previous task. Here, we used a combination of fMRI and a brain classifier to test whether the additional control demands under switching conditions lead to an increased or decreased strength of task representations in frontoparietal brain regions. We found that task representations are not modulated significantly by switching processes and generalize across switching conditions. Therefore, task representations in the human brain cannot account for the performance costs associated with alternating between tasks.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app