Add like
Add dislike
Add to saved papers

Synthesis, characterization and antimicrobial study of polymeric transition metal complexes of Mn(II), Co(II), Ni(II), Cu(II) and Zn(II).

Microbial Pathogenesis 2017 September
Salen ligands comprising of o-phenylenediamine (salop) and p-phenylenediamine (salpp) have been synthesized. The salen ligand, salop undergo Schiff base reaction with Formaldehyde and Barbituric acid to generate novel polymeric Schiff base, SBOPA in one instance while the second salen ligand, salpp on Schiff base reaction with formaldehyde and piperazine gives another novel polymeric Schiff base, SBPBA. These polymeric Schiff base ligands, SBOPA and SBPBA generates polymeric metal complexes in high yields on reaction with transition metal acetates, M(CH3 COO)2 .xH2 O where M = Mn(II), Co(II), Ni(II), Cu(II) and Zn(II). The polymeric Schiff bases, SBOPA and SBPBA and their transition metal complexes were systematically characterized, using various spectroscopic techniques. The structure, composition and geometry of SBOPA and SBPBA and their metal complexes were confirmed by spectral techniques (FT-IR, and 1 H NMR), elemental analysis, and electronic spectra magnetic moment. On the basis of FT-IR, 1 HNMR, electronic spectra and magnetic moment values Mn(II), Co(II) and Ni(II) ion were found to have octahedral geometry while Cu(II) and Zn(II) were found to be square-planar in nature. Thermogravimetric analysis (TGA) was used to evaluate their thermal behaviour and Cu(II)-SBOPA and Cu(II)-SBPBA were found to be thermally most stable. The polymeric Schiff base ligands, SBOPA and SBPBA and their metal complexes have also been screened for their plausible antimicrobial activity. Tetracyclin and Miconazole were used as standard drug to study the antibacterial and antifungal activity respectively. The Cu(II)-SBOPA and Cu(II)-SBPBA were found to be most potent antimicrobial agents.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app