Journal Article
Research Support, N.I.H., Extramural
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Bisphenol A impairs decidualization of human uterine stromal fibroblasts.

This study examined the effect of bisphenol A (BPA) exposure on human uterine stromal fibroblast cells (HuF) undergoing decidualization. HuF cells were isolated and cultured for eight days in the presence of a decidualization-inducing cocktail, while concurrently exposed to physiological and supra-physiologic doses of BPA (1ng/mL, 10ng/mL, 0.5μg/mL, 10μg/mL and 20μg/mL). Decidualization markers, steroid hormone receptors and cell cycle gene expression were detected by qRT-PCR and cellular proliferation was assessed by KI-67 immunofluorescent staining and MTS assay. BPA impaired decidualization at 10μg/mL and 20μg/mL, but not at lower doses. Additionally, BPA at 20μg/mL decreased progesterone receptor and estrogen receptor-alpha compared to controls. The highest dose of BPA also reduced cellular proliferation and cyclin D2 expression compared to controls. These findings demonstrate that BPA disrupts in vitro decidualization of uterine stromal fibroblasts by altering steroid hormone receptor expression at higher concentrations but not at lower physiological doses.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app