JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Quantification of metastatic load in a syngeneic murine model of metastasis.

Cancer Letters 2017 October 2
Bioluminescence imaging (BLI) is an established method for evaluating metastatic load in preclinical cancer models; however, BLI can produce observational error due to differences in substrate concentration and signal depth. In our syngeneic murine model of metastasis (VM-M3), we used a quantitative polymerase chain reaction (qPCR) method of DNA quantification to bypass these limitations. Liver, spleen, and brain from VM/Dk (VM) mice bearing VM-M3 tumor cells were first imaged ex vivo with BLI. qPCR quantification of tumor cell DNA was then performed on DNA extracted from these organs. Linear regression indicated that qPCR data predicted BLI data in solid tissue. Furthermore, the tumor cell detection limit was lower for qPCR analysis than for BLI analysis. In order to validate qPCR for use in detecting blood metastases, qPCR quantification was performed on whole blood collected from mice whose global organ metastatic load (summation of liver, spleen, kidneys, lungs, and brain) was quantified through BLI. Linear regression indicated that qPCR data in blood predicted BLI data in solid tissue. The results demonstrate that qPCR is an accurate and sensitive method of metastatic quantification in syngeneic murine models.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app