Add like
Add dislike
Add to saved papers

Effects of riluzole on spinal seizure-like activity in the brainstem-spinal cord preparation of newborn rat.

Neuroscience Research 2017 December
Riluzole blocks persistent Na+ current, inhibits generation of neuronal bursts and decreases glutamate-induced excitotoxicity. In previous studies of respiratory activity, riluzole suppressed inspiratory-related burst generation activity in rat slice or en bloc preparations. We examined riluzole's effects on inspiratory burst generation and drug-induced seizure-like activity in newborn rat en bloc preparations. Medulla-spinal cord preparations from postnatal day 0-3 Wistar rats were isolated under deep isoflurane anesthesia and were superfused with artificial cerebrospinal fluid equilibrated with 95% O2 and 5% CO2 , pH 7.4, at 25-26°C. Inspiratory activity was monitored from the fourth cervical ventral root. Seizure-like activity was induced by application of 20μM DL-threo-β-benzyloxyasparatate (TBOA, a glutamate uptake blocker preferentially acting on astrocytes) or coadministration of GABAA antagonist bicuculline (10μM) and glycine antagonist strychnine (10μM). Pretreatment and co-application with 10μM riluzole abolished the seizure-like burst activity induced by TBOA or bicuculline/strychnine. N-methyl-d-aspartic acid receptor antagonist MK801 (10μM) also depressed this activity. Riluzole may attenuate excessive glutamate action involved in pathological hyperexcitability of motor neurons with no major effect on generation of respiratory activity. Riluzole at the optimal dose could be a potential treatment to protect drug-induced epileptic brain tissue from excitotoxic damage without inducing respiratory suppression.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app