Add like
Add dislike
Add to saved papers

The proteasome maturation protein POMP increases proteasome assembly and activity in psoriatic lesional skin.

BACKGROUND: The ubiquitin proteasome pathway is involved in the pathogenesis of psoriasis and proteasome subunits are increased in lesional psoriatic skin. Recent works have highlighted that proteasome levels can be regulated through modulation of proteasome assembly notably by the proteasome maturation protein POMP.

OBJECTIVES: To investigate whether proteasome assembly and POMP expression are modified in psoriatic skin.

METHODS: Proteasome assembly as well as expression of proteasome regulators were assessed in non-lesional and lesional psoriatic skin using native gel electrophoresis and western blots respectively. The protein and mRNA expression levels of POMP were compared by western blots, immunohistochemistry and quantitative polymerase chain reaction. The role of POMP in keratinocyte proliferation and differentiation was assessed by silencing POMP gene expression by RNA interference in human immortalized keratinocyte HaCaT cells.

RESULTS: Both 20S and 26S proteasomes (and their respective proteolytic activities) as well as the main proteasome regulators are increased in lesional psoriatic skin. POMP binds to 20S precursor complexes and is overexpressed in lesional epidermal psoriatic skin, supporting that POMP-mediated proteasome assembly is increased in psoriatic skin. POMP silencing inhibited HaCaT cell proliferation and induced apoptosis through the inhibition of the proteasome assembly. Moreover POMP partial depletion decreased the expression of the differentiation markers keratin 10 and involucrin during the [Ca2+ ]-induced HaCaT cells differentiation.

CONCLUSION: Altogether these results establish a potential role for POMP and proteasome assembly in psoriasis pathogenesis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app