Add like
Add dislike
Add to saved papers

Effect of electrode position of low intensity neuromuscular electrical stimulation on the evoked force in the quadriceps femoris muscle.

BMC Research Notes 2017 July 21
OBJECTIVE: The present study aimed to test the effect of the electrode position and inter-electrode distance on the evoked force by neuromuscular electrical stimulation (NMES) with a low current intensity and a single pair of electrodes. Knee extensor forces during NMES to quadriceps femoris muscles were compared among four different electrode configurations in seven healthy men. Electrodes were located at 10 cm proximal and 15 cm distal (P10-D15), 10 cm proximal and 10 cm distal (P10-D10), 5 cm proximal and 15 cm distal, and 5 cm proximal and 10 cm distal (P5-D10) to the center of the longitudinal axis of the quadriceps femoris muscles.

RESULTS: The evoked force-time area for P5-D10 was significantly higher than those for P10-D15 and P10-D10 (p < 0.05). When using NMES devices with a low current intensity, a shorter inter-electrode distance and relatively distal locations can promote greater evoked forces in the quadriceps femoris muscles.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app