Add like
Add dislike
Add to saved papers

Effect of residual H2O2 from advanced oxidation processes on subsequent biological water treatment: A laboratory batch study.

Chemosphere 2017 October
H2O2 residuals from advanced oxidation processes (AOPs) may have critical impacts on the microbial ecology and performance of subsequent biological treatment processes, but little is known. The objective of this study was to evaluate how H2O2 residuals influence sand systems with an emphasis on dissolved organic carbon (DOC) removal, microbial activity change and bacterial community evolution. The results from laboratory batch studies showed that 0.25 mg/L H2O2 lowered DOC removal by 10% while higher H2O2 concentrations at 3 and 5 mg/L promoted DOC removal by 8% and 28%. A H2O2 dosage of 0.25 mg/L did not impact microbial activity (as measured by ATP) while high H2O2 dosages, 1, 3 and 5 mg/L, resulted in reduced microbial activity of 23%, 37% and 37% respectively. Therefore, DOC removal was promoted by the increase of H2O2 dosage while microbial activity was reduced. The pyrosequencing results illustrated that bacterial communities were dominated by Proteobacteria. The presence of H2O2 showed clear influence on the diversity and composition of bacterial communities, which became more diverse under 0.25 mg/L H2O2 but conversely less diverse when the dosage increased to 5 mg/L H2O2. Anaerobic bacteria were found to be most sensitive to H2O2 as their growth in batch reactors was limited by both 0.25 and 5 mg/L H2O2 (17-88% reduction). In conclusion, special attention should be given to effects of AOPs residuals on microbial ecology before introducing AOPs as a pre-treatment to biological (sand) processes. Additionally, the guideline on the maximum allowable H2O2 concentration should be properly evaluated.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app