Add like
Add dislike
Add to saved papers

Multipotent AChE and BACE-1 inhibitors for the treatment of Alzheimer's disease: Design, synthesis and bio-analysis of 7-amino-1,4-dihydro-2H-isoquilin-3-one derivates.

In this paper, the preparation of a new class of multi-target-directed ligands (MTDLs) based on a 7-amino-1,4-dihydro-2H-isoquilin-3-one, whose lead (compound I) showed promising properties in acetylcholinesterase (AChE) inhibitory activity [1], is described. The results of in vitro activities and molecular docking demonstrated that the target molecule (compounds 10a-n) with three parts of aromatic moieties and appropriate structural length can interact with aromatic residues in catalytic active site (CAS), peripheral anionic site (PAS) and the channel of AChE. And the introduce of connecting amide bonds, enables the target molecules provide sufficient hydrogen bond donors and acceptors to interact with the catalytic site of BACE-1. Notably, compound 10d exerted excellent AChE inhibition (IC50 = 18.93 ± 1.02 pM, 181-fold more inhibitory effect compared with donepezil), BACE-1 inhibition (97.68 ± 8.01% at 20 μM), and good metal chelating property, which can be chosen as lead compound for further optimization of novel small ligand for the treatment of Alzheimer's disease.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app