Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Corneal Confocal Microscopy: An Imaging Endpoint for Axonal Degeneration in Multiple Sclerosis.

Purpose: To evaluate whether corneal confocal microscopy (CCM) detects axonal degeneration and whether this is associated with retinal nerve fiber degeneration and clinical disability in patients with multiple sclerosis (MS).

Methods: Twenty-five patients with MS and 25 healthy control subjects underwent CCM, optical coherence tomography (OCT), and assessment of neurological disability using the expanded disability status scale (EDSS) and MS severity score (MSSS).

Results: In patients with MS compared with controls, there was a significant reduction in corneal nerve fiber density (CNFD), branch density (CNBD), and length (CNFL). There was no significant difference in CCM parameters between patients with optic neuritis (MS-ON) and without (MS-NON), or between relapsing-remitting (RRMS) and secondary-progressive MS (SPMS). There was significant thinning of the retinal nerve fiber layer (RNFL) in the global, temporal, temporal superior, and temporal inferior quadrants, with no difference between MS-ON and MS-NON. Patients with SPMS compared with RRMS had a significantly lower global, temporal superior, temporal inferior, nasal, and nasal superior RNFL. The EDSS and MSSS correlated significantly with CNBD, nasal, nasal superior, and nasal inferior RNFL and with CNBD and nasal inferior RNFL, respectively.

Conclusions: CCM and OCT detect significant corneal and retinal nerve degeneration which relates to the severity of neurological deficits in patients with mild MS.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app