Add like
Add dislike
Add to saved papers

Inverse Rendering and Relighting from Multiple Color plus Depth Images.

We propose a novel relighting approach that takes advantage of multiple color plus depth images acquired from a consumer camera. Assuming distant illumination and Lambertian reflectance, we model the reflected light field in terms of spherical harmonic coefficients of the Bi-directional Reflectance Distribution Function (BRDF) and lighting. We make use of the noisy depth information together with color images taken under different illumination conditions to refine surface normals inferred from depth. We first perform refinement on the surface normals using the first order spherical harmonics. We initialize this non-linear optimization with a linear approximation to greatly reduce computation time. With surface normals refined, we formulate the recovery of albedo and lighting in a matrix factorization setting, involving second order spherical harmonics. Albedo and lighting coefficients are recovered up to a global scaling ambiguity.We demonstrate our method on both simulated and real data, and show that it can successfully recover both illumination and albedo to produce realistic relighting results.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app