Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Enantioselective Construction of Tertiary C-O Bond via Allylic Substitution of Vinylethylene Carbonates with Water and Alcohols.

An efficient method for the enantioselective construction of tertiary C-O bond via asymmetric allylic substitution of racemic vinylethylene carbonates with water and alcohols has been developed. Under the cooperative catalysis system of an in situ generated chiral palladium complex and boron reagent in mild conditions, the process allowed rapid access to valuable tertiary alcohols and ethers in high yields with complete regioselectivities and high enantioselectivities. This protocol represented the first example of direct enantioselective formation of a tertiary C-O bond with water as an oxygen donor. The synthetic utilities of the process have been demonstrated by the elaboration of the products into key intermediates of biologically relevant agents, and chiral tertiary cyclic ethers could also be provided through the sequential reactions of the allylic etherification and ring-closing metathesis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app