Add like
Add dislike
Add to saved papers

Spin-reversal energy barriers of 305 K for Fe 2+ d 6 ions with linear ligand coordination.

Nanoscale 2017 August 4
A remarkably large magnetic anisotropy energy of 305 K is computed by quantum chemistry methods for divalent Fe2+ d6 substitutes at Li-ion sites with D6h point-group symmetry within the solid-state matrix of Li3 N. This is similar to values calculated by the same approach and confirmed experimentally for linearly coordinated monovalent Fe1+ d7 species, among the largest so far in the research area of single-molecule magnets. Our ab initio results therefore mark a new exciting exploration path in the search for superior single-molecule magnets, rooted in the configuration of d6 transition-metal ions with linear or quasilinear nearest-neighbor coordination. This d6 axial anisotropy may be kept robust even for symmetries lower than D6h , provided the ligand and farther-neighbor environment is engineered such that the splitting remains large enough.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app