Add like
Add dislike
Add to saved papers

The exemplary role of nanoconfinement in the proton transfer from acids to ammonia.

Proton transfer processes from mineral acids to bases (HX, where X = F, Cl, Br and I to ammonia) are normally feasible in solution and they cannot spontaneously occur in the gas phase. We demonstrate that this process can be feasible under nanoconfinement without using any solvent molecules. More interestingly, in contrast to the general observation, halide ions except fluoride behave like protons under high confinement, leading to the formation of NH3 X instead of NH4 ions. The triggering transformation of hydrogen bonded to the proton transferred complex under nanoconfinement is explained based on the thermodynamic quantity, static pressure.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app