Add like
Add dislike
Add to saved papers

Inhibitory Effects of Trapping Agents of Sulfur Drug Reactive Intermediates against Major Human Cytochrome P450 Isoforms.

In some cases, the formation of reactive species from the metabolism of xenobiotics has been linked to toxicity and therefore it is imperative to detect potential bioactivation for candidate drugs during drug discovery. Reactive species can covalently bind to trapping agents in in vitro incubations of compound with human liver microsomes (HLM) fortified with β-nicotinamide adenine dinucleotide phosphate (NADPH), resulting in a stable conjugate of trapping agent and reactive species, thereby facilitating analytical detection and providing evidence of short-lived reactive metabolites. Since reactive metabolites are typically generated by cytochrome P450 (CYP) oxidation, it is important to ensure high concentrations of trapping agents are not inhibiting the activities of CYP isoforms. Here we assessed the inhibitory properties of fourteen trapping agents against the major human CYP isoforms (CYP1A2, 2C9, 2C19, 2D6 and 3A). Based on our findings, eleven trapping agents displayed inhibition, three of which had IC50 values less than 1 mM (2-mercaptoethanol, N -methylmaleimide and N -ethylmaleimide (NEM)). Three trapping agents (dimedone, N -acetyl-lysine and arsenite) did not inhibit CYP isoforms at concentrations tested. To illustrate effects of CYP inhibition by trapping agents on reactive intermediate trapping, an example drug (ticlopidine) and trapping agent (NEM) were chosen for further studies. For the same amount of ticlopidine (1 μM), increasing concentrations of the trapping agent NEM (0.007-40 mM) resulted in a bell-shaped response curve of NEM-trapped ticlopidine S -oxide (TSO-NEM), due to CYP inhibition by NEM. Thus, trapping studies should be designed to include several concentrations of trapping agent to ensure optimal trapping of reactive metabolites.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app