Add like
Add dislike
Add to saved papers

Performance of a novel recycling magnetic flocculation membrane filtration process for tetracycline-polluted surface water treatment.

A recycling magnetic flocculation membrane filtration (RMFMF) process integrating circulating coagulation, magnetic enhanced flocculation and membrane filtration was investigated for the treatment of surface water micro-polluted by tetracycline, a typical pharmaceutical and personal care product. A bench-scale experiment was conducted and several water quality parameters including turbidity, ultraviolet absorbance at 254 nm (UV254 ), total organic carbon and tetracycline concentration were evaluated, taking coagulation membrane filtration and magnetic flocculation membrane filtration processes as reference treatments. The experimental results showed that at the optimum doses of 20 mg·L-1 ferric chloride (FeCl3 ), 4 mg·L-1 magnetite (Fe3 O4 ) and 6 mg·L-1 reclaimed magnetic flocs in RMFMF processes, removal efficiencies of above evaluated parameters ranged from 55.8% to 92.9%, which performed best. Simultaneously, the largest average particle size of 484.71 μm and the highest fractal dimension of 1.37 of flocs were achieved, which did not only present the best coagulation effect helpful in enhancing the performance of removing multiple contaminants, but also lead to the generation of loose and porous cake layers favouring reduced permeate flux decline and membrane fouling.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app