Add like
Add dislike
Add to saved papers

Potential of integrated vertical and horizontal flow constructed wetland with native plants for sewage treatment under different hydraulic loading rates.

In this study, a pilot-scale integrated constructed wetland with vertical flow (VF) and horizontal flow (HF) in series was designed and investigated to evaluate sewage wastewater treatment capacity. The VF unit was planted with Canna indica and was 1.2 m long, 1.2 m wide, and 1.2 m high; whereas the HF unit contained Colocasia esculenta and was 3.0 m long, 1.0 m wide, and 1.0 m high. The system was operated under different hydraulic loading rates (HLRs) of 0.1, 0.2, and 0.15 m/d. The effluent concentrations differed as HLR changed, and the means were total suspended solids (TSS): 87 mg/L; biological oxygen demand (BOD5 ): 31 mg/L; chemical oxygen demand (CODCr ): 59 mg/L; ammonium nitrogen (NH4 -N): 5.3 mg/L; nitrate nitrogen NO3 -N: 8.4 mg/L; total nitrogen (TN): 7.1 mg/L; phosphate (PO4 -P): 0.9 mg/L; and total coliforms (TCol): 1,485 most probable number (MPN)/100 mL. The average removal efficiencies for TSS, BOD5 , TN, NH4 -N, PO4 -P, and TCol were 28.3, 74.9, 79, 76.2, 3.6, and 82%, respectively. There were significant differences in the effluent concentrations among the three HLRs (P < 0.05), except for PO4 -P.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app