JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Three-Dimensional Bioprinting of Hepatic Structures with Directly Converted Hepatocyte-Like Cells.

Three-dimensional (3D) bioprinting technology is a promising new technology in the field of bioartificial organ generation with regard to overcoming the limitations of organ supply. The cell source for bioprinting is very important. Here, we generated 3D hepatic scaffold with mouse-induced hepatocyte-like cells (miHeps), and investigated whether their function was improved after transplantation in vivo. To generate miHeps, mouse embryonic fibroblasts (MEFs) were transformed with pMX retroviruses individually expressing hepatic transcription factors Hnf4a and Foxa3. After 8-10 days, MEFs formed rapidly growing hepatocyte-like colonies. For 3D bioprinting, miHeps were mixed with a 3% alginate hydrogel and extruded by nozzle pressure. After 7 days, they were transplanted into the omentum of Jo2-treated NOD Scid gamma (NSG) mice as a liver damage model. Real-time polymerase chain reaction and immunofluorescence analyses were conducted to evaluate hepatic function. The 3D bioprinted hepatic scaffold (25 × 25 mm) expressed Albumin, and ASGR1 and HNF4a expression gradually increased for 28 days in vitro. When transplanted in vivo, the cells in the hepatic scaffold grew more and exhibited higher Albumin expression than in vitro scaffold. Therefore, combining 3D bioprinting with direct conversion technology appears to be an effective option for liver therapy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app