JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

Predicting Optimal DEER Label Positions to Study Protein Conformational Heterogeneity.

Double electron-electron resonance (DEER) spectroscopy is a powerful experimental technique for understanding the conformational heterogeneity of proteins. It involves attaching nitroxide spin labels to two residues in the protein to obtain a distance distribution between them. However, the choice of residue pairs to label in the protein requires careful thought, as experimentalists must pick label positions from a large set of all possible residue-pair combinations in the protein. In this article, we address the problem of the choice of DEER spin-label positions in a protein. For this purpose, we utilize all-atom molecular dynamics simulations of protein dynamics, to rank the sets of labeled residue pairs in terms of their ability to capture the conformational dynamics of the protein. Our design methodology is based on the following two criteria: (1) An ideal set of DEER spin-label positions should capture the slowest conformational-change processes observed in the protein dynamics, and (2) any two sets of residue pairs should describe orthogonal conformational-change processes to maximize the overall information gain and reduce the number of labeled residue pairs. We utilize Markov state models of protein dynamics to identify slow dynamical processes and a genetic-algorithm-based approach to predict the optimal choices of residue pairs with limited computational time requirements. We predict the optimal residue pairs for DEER spectroscopy in β2 adrenergic receptor, the C-terminal domain of calmodulin, and peptide transporter PepTSo . We find that our choices were ranked higher than those used to perform DEER experiments on the proteins investigated in this study. Hence, the predicted choices of DEER residue pairs determined by our method provide maximum insight into the conformational heterogeneity of the protein while using the minimum number of labeled residues.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app