Add like
Add dislike
Add to saved papers

Inhibition mechanism of CDK-2 and GSK-3β by a sulfamoylphenyl derivative of indoline-a molecular dynamics study.

A good understanding of the inhibition mechanism of enzymes exhibiting high levels of similarity is the first step to the discovery of new drugs with selective potential. Examples of such proteins include glycogen synthase kinase-3 (GSK-3β) and cyclin-dependent kinase 2 (CDK-2). This article reports the mechanism of such enzyme inhibition as analyzed by an indoline sulfamylophenyl derivative (CHEMBL410072). Previous work has shown that such compounds exhibit selective properties towards their biological targets. This study used a combined procedure involving docking and molecular dynamics simulations, which allowed identification of interactions responsible for stabilization of complexes, and analysis of the dynamic stability of the systems obtained. The initial data obtained during the molecular docking stage show that the ligand molecule exhibits a similar affinity towards both active sites, which was confirmed by quantification of identified interactions and energy values. However, the data do not cover dynamic aspects of the considered systems. Molecular dynamics simulations realized for both complexes indicate significant dissimilarities in dynamics properties of both side chains of the considered ligands, especially in the case of the part containing the sulfamide group. Such increased mobility of the analyzed systems disrupts the stability of binding in the stabilized complex with GSK-3β protein, which finally affects also the binding affinity of the ligand molecule towards this enzyme.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app