Add like
Add dislike
Add to saved papers

Interobserver variability of patient positioning using four different CT datasets for image registration in lung stereotactic body radiotherapy.

PURPOSE: To assess the impact of different reference CT datasets on manual image registration with free-breathing three-dimensional (3D) cone beam CTs (FB-CBCT) for patient positioning by several observers.

METHODS: For 48 patients with lung lesions, manual image registration with FB-CBCTs was performed by four observers. A slow planning CT (PCT), average intensity projection (AIP), maximum intensity projection (MIP), and midventilation CT (MidV) were used as reference images. Couch shift differences between the four reference CT datasets for each observer as well as shift differences between the observers for the same reference CT dataset were determined. Statistical analyses were performed and correlations between the registration differences and the 3D tumor motion and the CBCT score were calculated.

RESULTS: The mean 3D shift difference between different reference CT datasets was the smallest for AIPvsMIP (range 1.1-2.2 mm) and the largest for MidVvsPCT (2.8-3.5 mm) with differences >10 mm. The 3D shifts showed partially significant correlations to 3D tumor motion and CBCT score. The interobserver comparison for the same reference CTs resulted in the smallest ∆3D mean differences and mean ∆3D standard deviation for ∆AIP (1.5 ± 0.7 mm, 0.7 ± 0.4 mm). The maximal 3D shift difference between observers was 10.4 mm (∆MidV). Both 3D tumor motion and mean CBCT score correlated with the shift differences (Rs  = 0.336-0.740).

CONCLUSION: The applied reference CT dataset impacts image registration and causes interobserver variabilities. The 3D tumor motion and CBCT quality affect shift differences. The smallest differences were found for AIP which might be the most appropriate CT dataset for image registration with FB-CBCT.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app