Add like
Add dislike
Add to saved papers

Monolithically-Integrated TE-mode 1D Silicon-on-Insulator Isolators using Seedlayer-Free Garnet.

Scientific Reports 2017 July 20
The first experimental TE-mode silicon-on-insulator (SOI) isolators using Faraday Rotation are here realized to fill the 'missing link' in source-integrated near infrared photonic circuits. The isolators are simple 1D 2-element waveguides, where garnet claddings and longitudinal magnetic fields produce nonreciprocal mode conversion, the waveguide equivalent of Faraday Rotation (FR). Quasi-phase matched claddings are used to overcome the limitations of birefringence. Current experimental SOI isolators use nonreciprocal phase shift (NRPS) in interferometers or ring resonators, but to date NRPS requires TM-modes, so the TE-modes normally produced by integrated lasers cannot be isolated without many ancillary polarisation controls. The presented FR isolators are made via lithography and sputter deposition, which allows facile upscaling compared to the pulsed laser deposition or wafer bonding used in the fabrication of NRPS devices. Here, isolation ratios and losses of 11 dB and 4 dB were obtained, and future designs are identified capable of isolation ratios >30 dB with losses <6 dB.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app