Add like
Add dislike
Add to saved papers

Association between microbiota-dependent metabolite trimethylamine- N -oxide and type 2 diabetes.

Background: The association of trimethylamine- N -oxide (TMAO), a microbiota-dependent metabolite from dietary choline and carnitine, with type 2 diabetes was inconsistent. Objective: We evaluated the association of plasma TMAO with newly diagnosed type 2 diabetes and the potential modification of TMAO-generating enzyme flavin monooxygenase 3 (FMO3) polymorphisms. Design: This was an age- and sex-matched case-control study of 2694 participants: 1346 newly diagnosed cases of type 2 diabetes and 1348 controls. Concentrations of plasma TMAO were measured, and FMO3 E158K polymorphisms (rs2266782) were genotyped. Results: Medians (IQRs) of plasma TMAO concentration were 1.47 μmol/L (0.81-2.20 μmol/L) for controls and 1.77 μmol/L (1.09-2.80 μmol/L) for type 2 diabetes cases. From the lowest to the highest quartiles of plasma TMAO, the multivariable adjusted ORs of type 2 diabetes were 1.00 (reference), 1.38 (95% CI: 1.08, 1.77), 1.64 (95% CI: 1.28, 2.09), and 2.55 (95% CI: 1.99, 3.28) ( P -trend < 0.001); each SD of ln-transformed plasma TMAO was associated with a 38% (95% CI: 26%, 51%) increment in ORs of type 2 diabetes. The FMO3 rs2266782 polymorphism was not associated with type 2 diabetes. The positive association between plasma TMAO and type 2 diabetes was consistent in each rs2266782 genotype group, and no significant interaction was observed ( P = 0.093). Conclusions: Our results suggested that higher plasma TMAO was associated with increased odds of newly diagnosed type 2 diabetes and that this association was not modified by the FMO3 rs2266782 polymorphism. This study was registered at clinicaltrials.gov as NCT03130894.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app