Journal Article
Review
Add like
Add dislike
Add to saved papers

Tumor necrosis factor-α, kidney function, and hypertension.

Hypertension is considered to be a low-grade inflammatory condition characterized by the presence of various proinflammatory cytokines. Tumor necrosis factor-α (TNF-α) is a constituent of the proinflammatory cytokines that is associated with salt-sensitive hypertension (SSH) and related renal injury. Elevated angiotensin II (ANG II) and other factors such as oxidative stress conditions promote TNF-α formation. Many recent studies have provided evidence that TNF-α exerts a direct renal action by regulating hemodynamic and excretory function in the kidney. The cytokine incites a strong natriuretic response and plays a part in regulation of the intrarenal renin-angiotensin system. The exact mechanistic role of TNF-α in the development of SSH is as yet poorly understood. While TNF-α antagonism has been shown to attenuate hypertensive responses in many hypertensive animal models, contrasting findings demonstrate that the direct systemic administration of TNF-α usually induces hypotensive as well as natriuretic responses, indicating a counterregulatory role of TNF-α in SSH. Differential activities of two cell surface receptors of TNF-α (receptor type 1 and type 2) may explain the contradictory functions of TNF-α in the setting of hypertension. This short review will evaluate ongoing research studies that investigate the action of TNF-α within the kidney and its role as an influential pathophysiological variable in the development of SSH and renal injury. This information may help to develop specific TNF-α receptor targeting as an effective treatment strategy in this clinical condition.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app