Add like
Add dislike
Add to saved papers

Vascular development in very young conifer seedlings: Theoretical hydraulic capacities and potential resistance to embolism.

PREMISE OF THE STUDY: Conifers have the highest rates of mortality during their first year, often attributed to water stress; yet, this tree life stage is the least studied in terms of hydraulic properties. Previous work has revealed correlations between xylem anatomy to both hydraulic transport capacity and resistance to hydraulic dysfunction. In this study, we compared xylem anatomical and plant functional traits of Pseudotsuga menziesii, Larix occidentalis, and Pinus ponderosa seedlings over the first 10 wk of growth to evaluate potential maximum hydraulic capabilities and resistance to drought-induced embolism. We hypothesized that, based on key functional traits of the xylem, predicted xylem embolism resistance of the species will reflect their previously determined drought tolerances with L. occidentalis, P. menziesii, and P. ponderosa in order of least to most embolism-resistant xylem.

METHODS: Xylem and pit anatomical characteristics and additional hydraulic-related functional traits were compared at five times during the first 10 wk of growth using confocal laser scanning microscopy (CLSM).

KEY RESULTS: Based on thickness to span ratio, torus to pit aperture overlap, and torus thickness, primary xylem appeared to be not only more hydraulically conductive but also less embolism-resistant than secondary xylem. By week 10, P. menziesii was predicted to have the most embolism-resistant xylem followed by P. ponderosa and L. occidentalis.

CONCLUSIONS: Theoretical measurements suggest that hydraulic transport capacities and vulnerability to embolism varied for each species over the first 10 wk of growth; thus, the timing of germination and onset of limited soil moisture is critical for growth and survival of seedlings.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app