Add like
Add dislike
Add to saved papers

Testing the Limits of the BOPHY Platform: Preparation, Characterization, and Theoretical Modeling of BOPHYs and Organometallic BOPHYs with Electron-Withdrawing Groups at β-Pyrrolic and Bridging Positions.

Several BOPHY derivatives with and without ferrocene fragments, and with electron-withdrawing ester groups appended to the β-pyrrolic positions have been prepared and characterized by NMR, UV/Vis near-infrared (NIR), high-resolution mass spectrometry, and fluorescence spectroscopy, as well as X-ray crystallography. The redox properties of new BOPHYs were probed by electrochemical (cyclic and differential pulse voltammetry) and spectroelectrochemical methods. In an attempt to prepare BOPHY derivatives with a cyano group at the bridging position using a similar approach for BODIPY cyanation, adducts from the nucleophilic attack of the cyanide anion on the bridging position in BOPHY have been isolated and characterized by spectroscopic methods. Oxidation of such adducts, however, resulted in formation of either the starting BOPHYs, or partial extrusion of the BF2 fragment from the BOPHY core, which was confirmed by spectroscopy and X-ray crystallography. DFT and TDDFT calculations on all target materials correlate well with the experimental data, and suggest the dramatic reduction of the nitrogen atom basicity at the hydrazine bridge of the BOPHY upon introduction of the cyano group at the bridging-carbon atom.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app