JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

QTLs Associated with Crown Root Angle, Stomatal Conductance, and Maturity in Sorghum.

Plant Genome 2017 July
Three factors that directly affect the water inputs in cropping systems are root architecture, length of the growing season, and stomatal conductance to water vapor (). Deeper-rooted cultivars will perform better under water-limited conditions because they can access water stored deeper in the soil profile. Reduced limits transpiration rate () and thus throughout the vegetative phase conserves water that may be used during grain filling in water-limited environments. Additionally, growing early-maturing varieties in regions that rely on soil-stored water is a key water management strategy. To further our understanding of the genetic basis underlying root depth, growing season length, and we conducted a quantitative trait locus (QTL) study. A QTL for crown root angle (a proxy for root depth) new to sorghum was identified in chromosome 3. For , a QTL in chromosome seven was identified. In a follow-up field study it was determined that the QTL for was associated with reduced but not with net carbon assimilation rate () or shoot biomass. No differences in guard-cell length or stomatal density were observed among the lines, leading to the conclusion that the observed differences in must be explained by partial stomatal closure. The well-studied maturity gene was identified in the QTL for maturity. The transgressive segregation of the population was explained by the possible interaction of with other loci. Finally, the most probable position of the genes underlying the QTLs and candidate genes were proposed.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app